Mathematics		Course to Program Map			
Program Outcomes: Upon completion of the program, graduates will be able to...		construct single and multivariable mathematical models for real world problems involving continuous change. (fit model/graph)	employ appropriate mathematical techniques and attend to precision for solutions. (do the math) (solve)	interpret mathematical derivative and integral solutions both written and orally. (communicate)	apply algebraic reasoning and properties for problems involving continuous change. (decision making)
Courses					
MATH 109 Trigonometry	13	IA	IA	IA	IA
MATH 110 Statistics	123	1	IA		
MATH 116 Discrete Math	13	I		IA	IA
MATH 120 Precalculus	13	IA	IA		IA
MATH 121 Fundamentals of Calculus	13	IA	IA	IA	IA
MATH 122 Calculus and Analytic Geometry I	134	RA	RA	RA	RA
MATH 123 Calculus and Analytic Geometry II	13	RA	RA	RA	RA
MATH 205 Calculus and Analytic Geometry III	135	RMA	RMA	RMA	RMA
MATH 206 Differential Equations	13	RMA	RMA	RMA	RMA

Mapping	
I	Introduced
R	Reinforced
M	Mastered
A	Assessed/Artifact

Essential Skills	
1	written communication
2	oral communication
3	critical thinking
4	cultural diversity
5	social responsibility

Employability Skills	
C	communication
P	problem solving
\mathbf{W}	work ethic

MATH 109 Trigonometry	Curriculum Map			
Course SLO: Students will be able to				
define the trigonometric functions using both a right triangle and the unit circle.				
define and interpret radian measurement. Recognize and apply circular functions as real-valued functions.			IA	
solve for unknown sides/angles within right triangles and know trigonometric function values for special angles (multiples of $\pi / 6$ and $\pi / 4$).		IA		
analyze the graphs of the six basic trigonometric functions and their arithmetic combinations using the concepts of period, phase shift, amplitude, and displacement.				
derive/verify trigonometric identities, including but not limited to double angle, half angle, angle sum, and angle difference identities.				IA
define, graph, and apply inverse trigonometric functions.				
solve equations involving trigonometric functions.		IA		
find solutions of oblique triangles using the Law of Cosines or Law of Sines.		IA		
solve applied problems including but not limited to vectors.	IA	IA		

derive the trigonometric form of complex numbers and perform calculations with them including products and quotients.				
translate between rectangular and polar coordinates and graph within the polar coordinate system.			IA	

MATH 110 Statistics	Curriculum Map			
Course SLO: Students will be able to				
create graphical and numerical descriptions of quantitative and qualitative data.				
calculate probabilities and percentiles related to a general normal distribution.		IA		
distinguish differences in data analysis and interpretation between observational data and data from designed experiments.				
calculate and interpret a confidence interval for a single parameter, using both large and small samples.		IA		
perform and interpret a test of hypotheses for a single parameter, using both large and small samples.		IA		
perform and interpret statistical inference on the difference of two parameters.		IA		
fit and interpret a simple linear regression model, including correlation and scatterplots.	1	IA		

MATH 116 Discrete Math	Curriculum Map			
Course SLO: Students will be able to				
determine recursive and closed formulas for numerical sequences.				
apply the operations of propositional logic to determine the equivalence of propositions and the truth of implications.				IA
apply proof by induction, by contradiction, and the pigeonhole principle.				IA
apply the language of sets and set properties to number systems.				IA
determine the properties of a particular relation.				
apply permutations, combinations, and the binomial theorem to counting.	1		IA	
determine probabilities of events using combinatorics.	1		IA	
categorize systems of vertices and edges using graphs and trees.				

MATH 120 Precalculus	Curriculum Map			
Course SLO: Students will be able to				
algebraically and graphically analyze functions (including polynomial, radical, absolute value, piecewise-defined, rational, exponential, and logarithmic), determining any intervals where the function is increasing or decreasing, intercepts, asymptotes, symmetry, maxima and minima.				
apply transformations, including translations, reflections, stretching, and compressing.				
perform binary operations on functions, including addition, subtraction, multiplication, division, and composition.				
find the zeros (real and complex) of a polynomial function.		IA		
solve polynomial and rational inequalities.		IA		
determine and analyze the inverse of a function.				
simplify expressions using the properties of exponents and logarithms.				
solve exponential and logarithmic equations.		IA		
solve application problems involving exponential and logarithmic models.	IA	IA		
convert angles to degrees or radians				
compute arc length, area of a sector, linear and angular velocity.				

determine the values of trigonometric functions and the inverse trigonometric functions.		IA		
graph the sine, cosine, and tangent functions using phase shifts, periodicity, and amplitude.				
simplify trigonometric expressions and establish or verify trigonometric identities.				
solve trigonometric equations.		IA		
solve right triangles using right-angle trigonometry.		IA		
solve oblique triangles using the Law of Sines and Law of Cosines.		IA		
solve applications involving triangles.	IA			
solve nonlinear systems of equations.		IA		
decompose a rational function into partial fractions.				

MATH 121 Fundamentals of Calculus	Curriculum Map			
Course SLO: Students will be able to				
evaluate limits using the formal limit definition, algebraic methods, and numerical or graphical methods.				IA
apply the definition of continuity and determine values for removable and non-removable discontinuities.			IA	
find derivatives both explicitly and implicitly of algebraic functions using the limit definition and the power, product, quotient and chain rules.		IA		IA
apply derivatives to finding equations of tangent lines, solving applications involving marginal or motion, finding related rates, solving optimization problems, forming the differential of a function, and performing curve analysis.	IA	IA	IA	
find indefinite integrals (anti-derivatives) using basic techniques as well as substitution, change of variable, long division, completing the square, integration by parts, and integral tables.				I
evaluate definite integrals using the Fundamental Theorem of Calculus, calculator techniques and numerical methods.			IA	
differentiate and integrate basic transcendental functions and solve applications involving present value.	IA		I	

MATH 122 Calculus and Analytic Geometry I	Curriculum Map			
Course SLO: Students will be able to				
evaluate the limit of a function at a point both algebraically and graphically.		IA		
evaluate the limit of a function at infinity both algebraically and graphically.		IA		
use the definition of a limit to verify a value for the limit of a function.		IA		IA
use the limit to determine the continuity of a function.		IA		
apply the Intermediate-Value Theorem.		IA		IR
use the limit to determine differentiability of a function.		IA		
use the limiting process to find the derivative of a		RA		IA
find derivatives involving powers, exponents, and sums.		RA		
find derivatives involving products and quotients.		RA		
find derivatives involving the chain rule.		RA		
find derivatives involving exponential, logarithmic, and trigonometric functions.		RA		
find derivatives involving implicit differentiation.		RA		
use the first derivative to find critical points.		RA		
apply the Mean-Value Theorem for derivatives.		RA		R
determine the behavior of a function using the first derivative.			IA	
use the second derivative to find inflection points.		RA		
determine the concavity of a function using the second derivative.			IA	

sketch the graph of the function using information gathered from the first and second derivatives.		RA	IA	
interpret graphs of functions.			IA	
use the derivative to find velocity, acceleration, and other rates of change.		RA	IA	
use the derivative to find the equation of a line tangent to a curve at a given point.			IA	
use optimization techniques in areas such as economics, the life sciences, the physical sciences, and geometry.	IA	RA	IA	
solve related rates problems.	IA		IA	
use Newton's Method.		RA	IA	
use differentials to estimate change.			IA	
find area using Riemann sums and integrals.			IA	
express the limit of a Riemann sum as a definite integral.				R
evaluate the definite integral using geometry.			IA	R
integrate algebraic, exponential, and trigonometric functions.				R
evaluate definite integrals using the Fundamental Theorem of Calculus.			IA	
apply the Mean-Value Theorem for integrals.				R
integrate indefinite integrals.				R
integrate using substitution.				R
approximate integrals using Simpson's Rule and the Trapezoidal Rule.		RA		

MATH 123 Calculus and Analytic Geometry II	Curriculum Map			
Course SLO: Students will be able to				
use integration to find area between curves and arc length of curves.	RA		RA	
use integration to find volume and surface area of a surface of revolution.	RA		RA	
use integration to find work and force.	RA		RA	
use integration to find centroids.	RA		RA	
apply integration by parts, trigonometric substitution, \& partial fractions to solve integrals.		RA		
identify when to use and apply L'Hopital's Rule.				RA
evaluate improper integrals.		RA		
determine and compute convergence/divergence of sequences and series.			RA	RA
find power series and Taylor and Maclaurin series representations of a given function and determine their intervals of convergence.				RA
identify conic sections and their features.				
represent curves by parametric equations, and apply the methods of calculus to them.			RA	
represent curves by polar equations.				RA
determine the area of a solid formed by a polar function.	RA			
determine the arc length of a curve of a polar function.	RA			

	MATH 205 Calculus and Analytic Geometry III	Curriculum Map			
	Course SLO: Students will be able to				
	definitions and properties associated with vectors (both 2 and 3 dimensional) and be able to perform all standard vector computations.			R	
$\begin{aligned} & n \\ & \\ & \cline { 1 - 1 } \end{aligned}$	write the equation of a sphere, a line (in 3-space) and a plane given relevant data about the structure.		RA		
$\stackrel{\text { r }}{ }$	determine the angle between two lines or two planes.		RA		
	determine the distance between a point and a plane or between two planes.	RA	RA		
山	forms of equations in 3-space for a cylinder, cone, ellipsoid, paraboloid, hyperboloid of one sheet and hyperboloid of two sheets.	RA			
$\begin{aligned} & \bar{\pi} \\ & \mathbf{n} \\ & \underline{Z} \end{aligned}$	graph these equations as well as work applications involving these structures.	RA	RMA	R	
$\begin{aligned} & \overline{\breve{u}} \\ & \underset{《}{U} \end{aligned}$	convert between Cartesian, cylindrical and spherical coordinates.		RA		RMA
$\begin{aligned} & \stackrel{\rightharpoonup}{c} \\ & \stackrel{\rightharpoonup}{7} \end{aligned}$	graph surfaces given in cylindrical or spherical coordinates.		RA	R	
	convert functions between Cartesian, cylindrical and spherical coordinate form.		RA		RMA
	find limits, derivatives and integrals of vector-valued functions.		RA		

understand the relationships concerning the position function, the velocity function and the acceleration function in space.			RMA	
$\underset{\sim}{2}$ work applications involving projectile motion.	RA	RMA		
find directed distance along a curve and the unit tangent vector of a differentiable curve.	RA	RA		
find curvature, the radius of curvature and the Principal Unit Normal Vector of a plane curve.		RA		
find the tangential and normal scalar components of acceleration.		RA		
determine the domain of a function in three variables.		RA	R	
bounded/unbound region, open/closed point and interior point.				
find and sketch c-level curves of a two-variable function.		RA		
graph surfaces by hand and also using a 3-D computer grapher.		RA	R	
find limits and analyze continuity on a surface generated by a two-variable function.		RA		
determine partial derivative (both first order and higher orders) for functions of two or more variables.		RA		
determine the differentiability and continuity of a function in two variables.		RA		
write a linear approximation of a function in two variables at a given point.		RA		
은 find the total differential of a function in two variables.		RA		
$\frac{2}{4}$ write and use chain rules for functions in two or more variables.		RA		
determine directional derivatives, gradient vectors and tangent planes.		RA		
the student should be able to find extrema and saddle points of functions in two variables.		RMA		R
use Lagrange multipliers to find constrained extrema of functions in two variables.	RA	RMA		

evaluate double and triple integrals.		RA	
use the double integral to find the area of a region.	RMA	RMA	
use the double integral to find the moments and the centroid of a region.	RMA	RMA	
use double integrals to find the average value of a function on a region.	RA	RA	
work a double integral either in rectangular or polar coordinate form.		RA	
use the triple integral to find the volume of a solid or the area of a region.	RMA	RMA	
use the triple integral to find the average value of a function in space.	RA	RA	
use the triple integral to find the mass, moments and centroid of a solid.	RMA	RMA	
work triple integrals in either rectangular, cylindrical or spherical coordinates.		RA	
change variables in a double or triple integral using the Jacobian.		RA	R
technique for evaluating a line integral.			
line integral to find the mass, moments and centroid of a thin rod or wire.	RA	RA	
line integral to find the work done by a force in a vector field; also to find flow along a curve and flux across a curve.	RMA	RA	
쁠 divergence and curl of a vector function.		RA	
green's Theorem to convert a line integral to a double integral (and visa versa).		RA	R
$\underset{>}{\mathrm{m}}$ find surface integrals and flux across a surface.		RA	
surface integral to find the mass, moments and centroid of thin shells.	RA	R	
$\underset{\square}{\text { E }}$ divergence theorem to evaluate surface integrals.		R	
stake's Theorem to convert a surface integral to a line integral (or visa versa).		R	
\geqq fundamental theorem of line integrals in order to evaluate line integrals which are independent of path.		RA	R

MATH 206 Differential Equations	Curriculum Map			
Course SLO: Students will be able to				
explain the Basic Terminology and Definitions for the Study of Differential Equations.			R	
show proficiency with First-Order Differential Equations.		RMA		RMA
show proficiency in Modeling First-Order Differential Equations.	RMA		RMA	
show proficiency with Higher Order Differential Equations.		RMA		RMA
show proficiency in Modeling Higher Order Differential Equations.	RMA		RMA	
show proficiency with Series Solutions of Linear Equations.		RMA		RMA
show proficiency in Laplace Transform.		RMA		RMA
show proficiency in the System of Linear First-Order Differential Equations.		RMA		RMA
show proficiency in Numerical Solutions of Ordinary Differential Equations. (if time permits).		RMA		

